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ABSTRACT

The automated production of maps of human settlement from recent satellite images is essential to detailed studies
of urbanization, population movement, and the like. Commercial satellite imagery is becoming available with
sufficient spectral and spatial resolution to apply computer vision techniques previously considered only for
laboratory (high resolution, low noise) images. In this project, we extracted the boundaries of human settlements
from IKONOS 4-band and panchromatic images using spectral segmentation together with a form of generalized
second-order statistics and detection of edges and corners.
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1. INTRODUCTION, PUBLICATIONS AND PATENTS

The automated production of maps of human settlement from recent satellite images
can benefit any large-scale application in which the urban land-cover, land-use, or boundary is
a consideration. For example, the Landscan1 database contains estimates of global human
population in a grid with cells of 30 arc-seconds (about 1 km) on a side. We seek to create
regional or global maps whose resolution captures the boundaries of villages that may be
considerably smaller.

Satellite images are now available with sufficient spectral and spatial resolution to make
this feasible, in principle. In this project, we extracted areas containing artificial structures
from IKONOS2 images (4m Ground Sample Distance [GSD], 4-band multi-spectral [MS] and
1m GSD panchromatic [PAN]), with the aim of using these areas as surrogates for regions in
which humans may be working or living. In this preliminary work, we did not address
demographic issues, but focussed on image understanding.

Following work by Heikkonen and Varfis3 and Zhang4 we adopted a multi-stage
approach. However, these authors used lower resolution imagery (Landsat TM, ERS-1 SAR,
and SPOT Pan), which led them to adopt processing stages and methods specific to their
imagery sources. Rather than work with pan-sharpened imagery, we used multi-spectral and
panchromatic images of the same scene in different processing stages:

1. We use unsupervised or supervised classification (or a combination thereof) to
segment the multi-spectral image into k spectral classes.

2. We use second-order statistics derived from the pixel class label co-occurrence
matrices to mask the scene into "mixed" and "unmixed" tiles, where the mixed tiles are
those likely to contain human settlements.
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3. Switching to the panchromatic image, we use the freely distributed SUSAN5 code to
detect edges and corners in the "mixed" tiles.

4. In the panchromatic image, we again use a tiling scheme to determine whether edges
and corners occur with sufficient frequency within a small 20x20 tile and therefore
likely to indicate built structure rather than spurious detections.

5. We use morphological techniques to grow regions containing a sufficient density (or
high enough frequency) of valid edges and corners.

6. Finally, we find the boundaries of the regions and convert them to a form suitable for
importation into a Geographic Information System (GIS).

We discuss these stages in more detail below. We have filed a Record of Invention6 for this
process, for which DOE is filing a patent. This report is a modified version (to include the
latest progress and programmatic information) of papers and presentations given at the 2003
SPIE Photonics West7 and Electronic Imaging15 Conferences.

2. MULTI-STAGE IMAGE PROCESSING

We use a novel approach to fuse both first and second order information in the MS
imagery [Figure 1], which in the case of IKONOS has four channels (near-IR, red, green, and
blue). First, we classify the MS image pixels into k (usually five or six) classes, using the
intensities in the MS channels as spectral features. This results in a labeled image where the
pixel class labels are represented as colors [Figure 2]. For this particular application, the pixel
class labels capture all the spectral information we need.

Figure 1. Portion of an IKONOS MS image near the California-Mexico border.
Satellite image by Space Imaging.

Visual inspection of many images suggested to us that, for 4m GSD, built-up areas
tended to contain a spatially inhomogeneous mixture of class labels. Therefore, in the second
stage, we introduce a kind of cross-spectral second order statistics to capture the spatial
variation in spectral information of the neighborhood of each pixel. This is based on the spatial



transition rate from one label to another in a single spatial step that occurs in an appropriate
sized tile (a square sub-image) of pixels. Experience shows that with five classes, a minimum
size of 10x10 pixels is necessary for a tile to provide a stable estimate of these rates within the
tile. These class label transition rates form the elements of a generalization of the classic Gray-
Level Co-occurrence Matrix (GLCM) that we call the Class-Label Co-occurrence Matrix (CLCM).
These rates of transition can be directional (horizontal, vertical, diagonal, cross-diagonal etc.)
and can be made dependent on spatial steps of various sizes. We have considered isotropic
and single-step transitions for our problem. The CLCM is of order kxk where k is the number of
classes (or labels) defined in the first stage. When the rows are normalized to a sum of one, the
CLCM is equivalent to the one-step transition probability matrix.

Figure 2: Five-fold unsupervised k-means classification of the image from Figure 1.
Original satellite image by Space Imaging.

We now use second-order statistical quantities derived from the CLCM to classify the
tiles into two classes: mixed tiles (class 1 — likely to contain built structures) and relatively
homogeneous tiles (class 2 — unlikely to contain built structures). This classification is based
on what are essentially textural features derived from the CLCM in the same way that textural
features are derived from the GLCM for single-channel images. Features that we found useful
in this regard are the angular second moment (also known as energy), entropy and the
diagonal entries of the CLCM. The first two are analogous to the definitions provided for the
GLCM in the literature.8,9 For classification purposes, the use of textural features based on the
intensity in a single channel is abundant in the literature.10,11,12,13,14

We then mosaic-ed the tiles from class 1 into a mask (Mask 1), which we then use to
demarcate areas of “sufficient” spectral mixture that they are likely to contain built structures
[Figure 3]. Obviously, Mask 1 needs refinement before we can consider it to indicate areas
containing built structure, as distinct from areas that are spectrally mixed for some other
reason. However, it is sufficient to limit the expenditure of downstream computational
resources to the areas within the mask. Just as obviously, setting the threshold higher or lower
on our mixing criterion will yield a smaller or larger mask.



Figure 3. Spectrally mixed areas of Figure1 (Mask 1).
Satellite image by Space Imaging.

Figure 4. Edges (yellow) and corners (red) detected by SUSAN in same area of PAN image.
Satellite image by Space Imaging.

In the next stages of analysis we refine Mask 1 with panchromatic processing. We do
this by transferring Mask 1 (multiplying pixel dimensions by 4 to transform from 4m to 1m
GSD) to the IKONOS PAN image, and detecting concentrations of ‘corners’ and ‘edge’ pixels
[Figure 4]. Specifically, we consider all 20x20 pixel tiles in the panchromatic image, each of
which was classified based on the frequencies of the ‘corners’ and ‘edge’ pixels as determined



by the SUSAN computer program to produce a Mask 2 [Figure 5]. Specifically, we determined
a tile should contain several edge pixels and at least two corner pixels to be a candidate for
containing built structures. For a 20x20 tile, the respective frequency thresholds were set at 20
for edge pixels and 2 for corner pixels.

SUSAN operates on each pixel in a gray-scale image by calculating brightness similarity
values for neighboring pixels, where the neighborhood is defined by a 37 pixel pseudo-disk.
Analysis of the centroids and first-order and second-order moments of these values, along
with non-maximum suppression and thinning routines, allows for fast and effective
smoothing and detection of edges and corners. We found that application of SUSAN
smoothing to our images prior to edge and corner detection resulted in a fairly robust
algorithm with respect to selection of the brightness threshold. Optimization of the mask size
and the spatial threshold for this application, where the corners of interest are predominantly
90°, may improve performance but has not been explored.

We used morphological processing to “clean up” Mask 2 by merging small regions with
neighboring large regions, and eliminating small isolated regions. The “cleaned” Mask 2 was
then resized to match the resolution of the MS image and combined via a logical AND
operation with Mask 1 to create a final Mask 3, which demarcated regions containing built
structures [Figure6]. Finally, we performed a connected component analysis of Mask 3,
followed by a morphological gradient operation, in order to find boundaries for export to a
Geographic Information System (GIS).

Figure 5. Mask2 of tiles containing edges and corners.
Satellite image by Space Imaging.



Figure 6. Final mask (Mask 3) containing spectral mixing, edges, and corners (indicating built structures).
Satellite image by Space Imaging.

3. ROBUSTNESS EXPERIMENTS

We also explored the applicability of our techniques to images from different regions of
the world. In particular, we are interested in understanding how much of the analysis
conducted in one region can be directly applied to another region. For example, can we use the
classification of the pixels in the multi-spectral image of one region to build a model that can
accurately classify the pixels in another region?

Figure 7: Image A (400x400 px) Nebraska
Satellite image by Space Imaging.

Figure 8: Image B (400 by 400 px) northern Mexico.
Satellite image by Space Imaging.



To investigate this idea, we used two sample images: Image A (Figure 7) is a 400 by 400
pixel image from Nebraska, while Image B (Figure 8) is a 400 by 400 pixel image from northern
Mexico. First, we applied unsupervised techniques using the k-means clustering algorithm to
the multi-spectral image in Figure 7. A visual inspection indicated that for this image, 6 classes
resulted in the best clustering. Using representative pixels from these 6 classes, we then
created a training set of 4860 pixels, with approximately 800 pixels from each of the 6 classes
(the false-colored areas with numerals in Figure 7). These classes correspond to lush
vegetation, not-so-lush vegetation, tarred roads and parking lots, concrete roads and rooftops,
very bright surfaces such as rooftops, and dirt (with sparse vegetation).

(Class 1) (Class 2)

(Class 3) (Class 4)

(Class 5) (Class 6)

Figure 9. Parallel plots of the class separations in feature space using the training set and image in Figure 7.



Next, to check that the training set was a good representation of each class, we
generated parallel plots for the pixels in each of the six classes. Parallel plots are often used in
the visualization of high-dimensional data. Instead of the traditional coordinate system where
the axes are perpendicular to each other, in parallel plots the axes are parallel to each other. As
a result, more than three variables or dimensions can be visualized easily. Figure (9) displays
the parallel plots for the initial set of pixels that were chosen as the training set for the image in
Figure 7.  Each parallel plot has on the x-axis the five features or  (near-IR, red, blue, green, and
the class) and on the y-axis the corresponding values of the variable for each pixel. Thus a
pixel is represented by the line segments that connect the values of the five variables. Note that
for most of the classes in Figure 9, the parallel plots lie within a narrow band, indicating that
the class is well defined. Also note that classes 2, 4, 5, and 6 have several outliers, that is, pixels
that appear not to fit in the class. This is caused by the way in which the regions were selected
to form a training set.  While care was taken to select regions with pixels belonging
predominantly to one class, this was not always possible, resulting in the outliers in the
parallel plots. These outliers were removed from the training set before classification, resulting
in the parallel plots in Figure 10 for classes 2 and 6.

(Class 2) (Class 6)

Figure 10. Parallel plots of classes 2 and 6 after removal of outliers.

Note that there is very little overlap in the parallel plots for the six classes. This
indicates that the classes are well separated in feature space, and that a classifier with this
training set will likely have a low cross-validation error.

We used this training set to build a decision tree model. This model resulted in a ten-
fold cross-validation error rate of less than 1%. Next, we used the decision tree to classify all
the 160,000 pixels in Image A, resulting in Figure 12. Comparing the original Image A (Figure
7), the result of unsupervised classification (Figure 10), and the result of supervised
classification (Figure 11), we observe that for this image, the decision tree model built using a
sub-set of the pixels in the image generalizes quite well to the entire image. This indicates that
the training set and the decision tree model are an accurate representation of the pixels in
Image A.

Next, we applied the decision tree to the pixels in Image B, resulting in the classification
shown in Figure 13. Comparing this with the original Image B (Figure 8), and the result of
unsupervised classification using 6-class k-means algorithm on Image B (Figure 12), we
observe that the decision tree model also works well for pixels in this region. Though the two
images A and B are from two different regions of the world, they are similar enough that a
model built to classify pixels in the multi-spectral image of one can be used successfully to
classify pixels in the multi-spectral image of the other. If the two images were quite different, it



is unlikely that such an experiment would have been equally successful. This indicates that it
might be possible to build models that would be tuned to different regions of the world.
However, depending on the region, it may be necessary to build separate models to account
for seasonal variation.

Figure 10: Image A classified using k-means algorithm, with 6
classes.

Original satellite image by Space Imaging.

Figure 11: Image A classified using a decision tree algorithm
using 4860 pixels from Figure 7

Original satellite image by Space Imaging.

Figure 12: Image B classified using k-means algorithm, with 6
classes.

Original satellite image by Space Imaging.

Figure 13: Image B classified by a decision tree algorithm
using 4860 pixels from Figure 7.

Original satellite image by Space Imaging.

We explored the robustness of our methodology in further detail in a SPIE conference paper.15



4. CONCLUSIONS AND FURTHER DIRECTIONS

We have developed a multi-stage method for extracting areas containing artificial
structures (buildings, indicating human settlements) from satellite imagery. Because we used
only a frequency threshold on the joint occurrence of edges and corners in the textural
processing stages, we believe our methodology will prove robust against partial obscuration
of buildings. In future work, relative placement of edges, corners, and other features can be
used to detect specific types of structures. For this paper we prototyped our algorithms in
ENVI/IDL.16 The supervised classification and robustness work was done using Sapphire,17 a
system developed in part by one of the authors (Kamath). Thus far, we have used spectral
mixing and textural (edge, corner) information to mitigate false positives in each type of
processing. Clearly, we could detect edges and corners only within the areas of spectral
mixing (Mask 1), or detect spectral mixing only in areas containing edges and corners (Mask
2) to reduce the computational burden required to produce the built-up areas (Mask 3). In
future work, we hope to do such timing studies, and to explore both supervised learning
techniques, especially Decision Tree and Artificial Neural Network classifiers, for various
stages of the processing, as well as to examine unsupervised techniques such as isodata18 and
k-means re-clustering.19,20 (We expect that supervised techniques will prove faster, while
unsupervised techniques will prove more robust.) We also hope to establish robustness to
geo-cultural, seasonal, illumination, and look-angle variations. We anticipate that several
parameter sets will be required to produce global settlement maps, with each parameter set
optimized for a particular portion of a continent and season.

This AIDE LDRD/ER project terminated in February, 2003, to allow the project team to
merge with the team working on the Image Content Engine LDRD/Strategic Initiative (ICE
LDRD/SI). Work on Human Habitation Detection (HHD, the subject of the AIDE/ER effort)
was set aside until ICE demonstrated the extraction of objects from digital imagery and their
organization into semantic graphs, after which HHD resumed in November 2003. We have
now arrived at a candidate segmentation of the world based on ecological regions21 (which
includes considerations of climate and natural vegetation), and are gathering imagery from
these regions. Future progress will be reported by the ICE/SI.
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